Communication dans un congrès
          
              
                
                Titre  :  
                
                  Algebraic points of any degree on the affine curve y^2 = x(x^2 + 1)(x^2 + 3)                
  
              
              
                 
                Auteurs  :  
                
                Pape Modou Sarr, El Hadji Sow, Moussa Fall, Oumar Sall                
  
              
              
              
                  
                Résumé :  
                
                We determine the set of algebraic points of any degree over Q
 on the affine curve y 2 = x(x 2 + 1)(x 2 + 3).
This result extend a previous result of Siksek who described in [3] the set of rational points on Q
 on this curve. Our work consists in determining the algebraic points of any degree on the same curve                
  
              
              
                  
                Mots-clés :  
                
                Plane curves, Degree of algebraic points, Rational points, Algebraic extensions, Jacobian                
  
              
              
                 
                Congrès  :  
                
                Second International Symposium of Non-Linear Analysis Geometry and Applications                
  
              
              
                 
                Date  :  
                
                26-29 Janvier 2022                
  
              
              
                 
                Ville  :  
                
                Ziguinchor                
  
              
              
                 
                Pays  :  
                
                Senegal                
  
              
                            
                 
                Pages  :  
                
                517-525                
  
              
              
              
                 
                Date de publication  :  
                
                April 2022                
  
              
                            
                 
                Lien de la publication  :  
                Voir
                 ici