Article dans une revue

Titre : Équation de Cauchy–Riemann pour les courants prolongeables – applications
Auteurs : Salomon Sambou
Du labo : Salomon SAMBOU,
Résumé : Soient <span class="math"><span id="MathJax-Element-17-Frame" class="MathJax_SVG" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mtext&gt;X&lt;/mtext&gt;&lt;/math&gt;"></span> une variété analytique complexe de dimension <span id="MathJax-Element-18-Frame" class="MathJax_SVG" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mtext&gt;n&lt;/mtext&gt;&lt;/math&gt;"></span> et <span id="MathJax-Element-19-Frame" class="MathJax_SVG" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mtext&gt;&amp;#x3A9;&lt;/mtext&gt;&lt;/math&gt;"></span> un domaine de<span id="MathJax-Element-20-Frame" class="MathJax_SVG" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mtext&gt;X&lt;/mtext&gt;&lt;/math&gt;"></span>. On résout le <span id="MathJax-Element-21-Frame" class="MathJax_SVG" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mtext&gt;&amp;#x2202;&lt;/mtext&gt;&lt;/math&gt;"></span> pour les courants prolongeables définis dans <span id="MathJax-Element-22-Frame" class="MathJax_SVG" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mtext&gt;&amp;#x3A9;&lt;/mtext&gt;&lt;/math&gt;"></span> sous des hypothèses de convexité ou concavité sur <span id="MathJax-Element-23-Frame" class="MathJax_SVG" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; font-style: normal; font-weight: normal; line-height: normal; font-size: 14.4px; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;" tabindex="0" role="presentation" data-mathml="&lt;math xmlns=&quot;http://www.w3.org/1998/Math/MathML&quot;&gt;&lt;mtext&gt;&amp;#x3A9;&lt;/mtext&gt;&lt;/math&gt;"></span>. On applique les résultats ainsi obtenus à l'étude de l'isomorphisme de Dolbeault pour les hypersurfaces réelles.</span>
Journal : Comptes Rendus de l'Académie des Sciences - Series I - Mathematics
Volume : 332
Issue : 6
Pages ou Numéro article : 497-500
Année : 2001
DOI : 10.1016/S0764-4442(01)01871-7
Date de publication : 23 April 2001
Lien de la publication : Voir ici
.